Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Iqbal Choudhary, ${ }^{\text {a }}$ Sammer Yousuf, ${ }^{\text {a }}$ Atta-ur-Rahman, ${ }^{\text {a }}$ Shazia Anjum, ${ }^{\text {a* }}$ Hoong-Kun Fun ${ }^{\text {b }}$ and Shamsher $\mathrm{Ali}^{\mathrm{a}}$

${ }^{\mathrm{a}} \mathrm{HE}$ E Research Institute of Chemistry, International Centre for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail:
anjumshazia@yahoo.com, hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.035$
$w R$ factor $=0.095$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(5R,6S,8S,9R,14R,15R,17R,18S,21S,24R,26S,27R)-5a-Chloro-16,24-cyclo-13,14-secoergost-2-ene-18,26dioic acid-14:17,14:27-diepoxy-6 $\beta, 13,20,22$-tetra-hydroxy-1,15-dioxo- γ-lactone δ-lactone methanol solvate monohydrate

The title compound, $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{10} \mathrm{Cl} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$, was isolated from Physalis minima. The rigid molecule consists of eight fused rings involving three lactones. The spiro-fused γ-lactone rings are in half-chair and envelope conformations. The spirofused γ-lactone rings are fused to a cyclohexene ring, which is in a half-chair conformation. The outermost cyclohexene ring and δ-lactone rings adopt half-chair and envelope conformations, respectively. Intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed.

Comment

Physalins are the steroidal lactone constituents of Physalis and other closely related genera, belonging to the family Solanaceae (Makino, Kawai, Kito et al., 1995). Normal withanolides such as withaferin-A are $\mathrm{C}-28$ steroidal compounds possessing a relatively highly oxidized ergostane-type skeleton and characterized by a six-membered lactone ring in the side chain (Kirson et al., 1971; Glotter et al., 1974). The physalins are biogenetically related to the withanolides and characterized by (a) oxidative C13/C14-bond cleavage yielding a ninemembered ring, (b) formation of a new six-membered carbocycle between C16 and C24, and (c) oxidation of the C13 methyl group to a carboxylic acid, which results in the formation of 18,20-lactonization (Glotter et al., 1974). Physalins are commonly named as 16,24 -cyclo- 13,14 -secosteroids (Makino, Kawai, Kito et al., 1995).

The title compound, (I), known as physalin H , is a steroidal lactone (physalin) previously isolated from Physalis angulata (Row et al., 1978; Makino, Kawai, Ogura et al., 1995). Steroidal lactones (withanolides and physalins) exhibit a number of

Received 30 August 2005 Accepted 20 September 2005 Online 30 September 2005

[^0]biological activities, including antitumour (Antoun et al., 1981), immunomodulatory (Budhiraja et al., 1984), antimycobacterial (Pietro et al., 2000), antifungal, anti-inflammatory (Budhiraja et al., 1984, 1986), insect repellant (Glotter, 1991) and immunostimulating (Bates \& Eckert, 1972). Compound (I) showed moderate in vitro cytotoxic activity against HeLa cells (Makino, Kawai, Ogura et al., 1995). As part of our ongoing research into bioactive constituents from medicinal plants, we have isolated compound (I) from Physalis minima for the first time. Fresh plants of Physalis minima, locally known as Aknaaj, were collected from Karachi (Pakistan). In the present investigation, we have established the absolute stereochemistry of (I) by single-crystal X-ray diffraction studies (Fig. 1).

Compound (I) is a highly oxygenated steroidal lactone having eight fused rings. The six-membered ring $A(\mathrm{C} 1-\mathrm{C} 5 /$ C 10) is in a half-chair conformation, with atoms C5 and C10 deviating from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ plane by 0.335 (4) and -0.453 (4) \AA, respectively. Ring $B(\mathrm{C} 5-\mathrm{C} 10)$ is trans-fused to ring A and adopts a chair conformation. The two spiro-fused five-membered rings $D(\mathrm{O} 8 / \mathrm{C} 14-\mathrm{C} 17)$ and $E(\mathrm{O} 9 / \mathrm{C} 18 / \mathrm{C} 13 /$ C17/C20) adopt half-chair and envelope conformations, respectively; in ring D, the deviations of atoms C16 and C17 from the O8/C14/C15 plane are 0.355 (4) and -0.226 (4) A , respectively, and in ring E atom C 17 deviates by 0.638 (3) \AA from the O9/C18/C13/C20 plane. Ring F (C16/C17/C20/C22C 24) is in a half-chair conformation, allowing the $\mathrm{C} 24-\mathrm{C} 16-$ $\mathrm{C} 17, \mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 20, \mathrm{C} 17-\mathrm{C} 20-\mathrm{C} 22$ and $\mathrm{C} 20-\mathrm{C} 22-\mathrm{C} 23$ bond angles to widen to 114.61 (14), 114.97 (14), 114.43 (14) and $114.83(16)^{\circ}$, respectively, while the other internal angles remain close to the tetrahedral value. Ring G (O10/C22-C26) adopts an envelope conformation. The two epoxy seven- and eight-membered rings (O7/C14-C16/C24/C25/C27 and C8/C9/ $\mathrm{C} 11-\mathrm{C} 14 / \mathrm{C} 17 / \mathrm{O} 8$) are in chair and boat-chair conformations, respectively.

The Csp ${ }^{3}$ - Csp ${ }^{3}$ bond distances lie in the range 1.508 (3)1.566 (2) A. The C24-C25-C26 [117.03 (15) ${ }^{\circ}$, C9-C11C12 [119.48 (14) ${ }^{\circ}$] and C11-C12-C13 [119.98 (14) ${ }^{\circ}$] angles deviate significantly from ideal tetrahedral values, as reported for this class of compounds (Kawai et al., 1970, 1994; Taga et al., 1991). The bond angles involving the spiro atom C17 range from 102.02 (13) to $115.05(13)^{\circ}$.

The water and methanol molecules of solvation participate in several hydrogen bonds. A number of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed in the molecular and crystal structures. The molecules are linked together by these interactions to form a three-dimensional molecular network (Fig. 2). Most of the intramolecular hydrogen bonds form $S(5)$ or $S(6)$ ring motifs (Bernstein et al., 1995).

Experimental

Air-dried and milled plant material of Physalis minima (25.8 kg) was extracted with methanol (120 l) over a period of 21 d at room temperature. After evaporation of the solvent, an extract (2.5 kg) was obtained, which was dissolved in distilled water (5l) and defatted

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms and methanol and water molecules have been omitted for clarity.

Figure 2
The crystal packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds.
with petroleum ether (101). The defatted aqueous extract was further fractionated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(351)$ and $n-\mathrm{BuOH}(5 \mathrm{l})$, respectively. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was concentrated to a gum (350.5 g) and subjected to column chromatography. A fraction (1.4 g), obtained on elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5), was subjected to repeated column chromatography, which yielded sub-fractions $A(120.5 \mathrm{mg}), B(98.8 \mathrm{mg}), C$ $(50.5 \mathrm{mg}), D(105.8 \mathrm{mg})$ and $E(88.5 \mathrm{mg})$. Repeated column chromatography on sub-fraction B (silica gel $70-230$ mesh size) using petroleum ether-acetone ($80: 20$), afforded compound (I) (20 mg), which was recrystallized using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (70:30) [Physalin H (I): $20 \mathrm{mg}, 5.7 \times 10^{-3} \%$ yield, m.p. $\left.548-551 \mathrm{~K}\right]$.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClO}_{10} \cdot \mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=613.04$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=13.0931$ (5) \AA
$b=13.5932$ (6) \AA
$c=15.6098$ (6) \AA
$V=2778.19(19) \AA^{3}$
$Z=4$
$D_{x}=1.466 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 15020 reflections
> $\theta=2.0-26.5^{\circ}$
> $\mu=0.21 \mathrm{~mm}^{-1}$
> $T=293$ (2) K
> Block, colourless
> $0.54 \times 0.33 \times 0.21 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.897, T_{\text {max }}=0.957$
15825 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.095$
$S=0.85$
5745 reflections
389 parameters
H atoms treated by a mixture of independent and constrained refinement

5745 independent reflections 5545 reflections with $I>2 \mathrm{~s}(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-16 \rightarrow 14$
$k=-17 \rightarrow 16$
$l=-19 \rightarrow 17$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0667 P)^{2}\right. \\
& +1.2367 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 2520 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.02 \text { (6) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 11 A-\mathrm{H} 11 \mathrm{O} \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.96 (4)	1.84 (4)	2.780 (5)	163 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 3^{\text {ii }}$	0.84	2.08	2.775 (2)	139
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.82	1.98	2.786 (2)	170
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 11 A^{\text {ii }}$	0.82	1.97	2.718 (5)	152
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 6^{\text {iii }}$	0.82	2.03	2.832 (2)	170
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 4^{\text {ii }}$	0.97	2.54	2.898 (3)	102
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl}^{1 i}{ }^{\text {ii }}$	0.97	2.72	3.1140 (19)	105
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.31	2.696 (2)	102
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.98	2.75	3.1814 (17)	107
C9-H9 . . O_{2}	0.98	2.27	3.065 (2)	138
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 5^{\text {ii }}$	0.97	2.41	3.191 (2)	137
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.97	2.38	2.894 (2)	112
$\mathrm{C} 19-\mathrm{H} 19 \mathrm{~B} \cdots \mathrm{Cl}^{\text {iv }}$	0.96	2.71	3.578 (2)	150
C19-H19C.. $\mathrm{O}_{4}{ }^{\text {ii }}$	0.96	2.38	3.012 (3)	123
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.96	2.28	2.871 (2)	119
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \cdots \mathrm{O} 8^{\text {ii }}$	0.96	2.51	2.871 (2)	102
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 11 A^{\text {iii }}$	0.98	2.54	3.404 (6)	146

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) x, y, z; (iii) $-x+\frac{3}{2},-y, z+\frac{1}{2}$; (iv)
$x-\frac{1}{2},-y+\frac{1}{2},-z+1$.
The O atom of the methanol molecule is disordered over two positions with occupancies of 0.602 (6) and 0.398 (6). During the refinement, the U^{ij} components of the disordered atoms were restrained to be equal. Atom H 11 O was located in a difference map and refined isotropically. The water H atoms were located in a difference map and allowed to ride on their parent atom with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})(\mathrm{O}-\mathrm{H}=0.82$ and $0.84 \AA)$. All other H atoms
were placed in calculated positions $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$), with $U_{\text {iso }}$ values constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for the methyl and hydroxyl H atoms, and $1.2 U_{\text {eq }}(\mathrm{C})$ for the others.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

SY thanks the Higher Education Commission, Islamabad, Pakistan, for financial support through the Merit Scholarship Scheme. AUR, SA and HKF also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/ PFIZIK/653003/A118.

References

Antoun, M. D., Abramson, D., Tyson, L. R., Chang-JER, C., MacLaughlin, J. L., Peck, G. \& Carsaday, J. M. J. (1981). J. Nat. Prod. 44, 579-580.

Bates, R. B. \& Eckert, D. J. (1972). J. Am. Chem. Soc. 94, 8258-8260.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Budhiraja, R. D., Garg, K. N., Sudhir, S. \& Arora, B. (1986). Planta Med. 52, 28-29.
Budhiraja, R. D., Sudhir, S. \& Garg, K. N. (1984). Planta Med. 50, 134-136.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Glotter, E. (1991). Nat. Prod. Rep. 8, 415-440.
Glotter, E., Kirson, I., Abraham, A., Sethi, P. D. \& Subramanian, S. S. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 1370-1374.
Kawai, M., Makino, B., Taga, T., Miwa, Y., Yamamoto, T. \& Furut, T. (1994). Bull. Chem. Soc. Jpn, 67, 222-226.
Kawai, M., Matsuura, T. \& Osaki, K. (1970). J. Chem. Soc. B, pp. 812-815.
Kirson, I., Glotter, E. \& Lavie, D. (1971). J. Chem. Soc. C, pp. 2032-2044.
Makino, B., Kawai, M., Kito, K., Yamamura, H. \& Butsugan, Y. (1995a). Tetrahedron, 51, 12529-12538.
Makino, B., Kawai, M., Ogura, T., Nakanishi, M., Yamamura, H. \& Butsugan, Y. (1995b). J. Nat. Prod. 58, 1668-1674.

Pietro, R. C., Kashima, S., Sato, D. N., Januario, A. H. \& Franca S. C. (2000). Phytomedicines, 7, 335-338.
Row, L. R., Sarma, N. S., Matsuura, T. \& Nakashima, R. (1978). Phytochemistry, 17, 1641-1645.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Taga, T., Miwa, Y. \& Machida, K. (1991). Acta Cryst. C47, 2188-2191.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
M. Iqbal Choudhary, ${ }^{\text {a }}$ Sammer Yousuf, ${ }^{\text {a }}$ Atta-ur-Rahman, ${ }^{\text {a }}$ Shazia Anjum, ${ }^{\text {a* }}$ Hoong-Kun Fun ${ }^{\text {b }}$ and Shamsher Ali $^{\text {a }}$
${ }^{\text {a }} \mathrm{HEJ}$ Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail:
anjumshazia@yahoo.com, hkfun@usm.my

(5R,6S,8S,9R,14R,15R,17R,18S,21S,24R,26S,27R)-5a-Chloro-16,24-cyclo-13,14-secoergost-2-ene-18,26dioic acid-14:17,14:27-diepoxy-6 $\beta, 13,20,22$-tetra-hydroxy-1,15-dioxo- γ-lactone δ-lactone methanol solvate monohydrate. Corrigendum

Some errors in the paper by Choudhary, Yousuf, Atta-urRahman, Anjum, Fun \& Ali [Acta Cryst. (2005), E61, o3523o3525] are corrected. In the Abstract, the text 'The rigid molecule consists of eight fused rings involving three lactones. The spiro-fused γ-lactone rings are in half-chair and envelope conformations. The spiro-fused γ-lactone rings are fused to a cyclohexene ring, which is in a half-chair conformation.' is corrected to 'The rigid molecule consists of eight fused rings involving two lactones. The spiro-fused rings D and E are in half-chair and envelope conformations. The spiro-fused γ lactone rings are fused to a cyclohexene ring F, which is in a half-chair conformation.' In line 11 of the Comment, an atom label is corrected so that the text reads ' (c) oxidation of the C18 methyl group'.

Received 11 October 2005 Accepted 12 October 2005
Online 15 October 2005

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

